

Yuqian Li

- Phone: +86 18640494157 • Email: yuqian-li@hotmail.com • Address: Beijing, China
- Google Scholar: <https://scholar.google.com/citations?user=DzzW7r0AAAAJ>.

EDUCATION

Xuanwu Hospital, Capital Medical University, Beijing, China <i>Master of Science in Neurobiology</i> Core Courses (<i>Biomedical aspects</i>): Neurobiology, Flow Cytometry, Animal Cell Culture, Histochemistry, Biostatistics, etc.	09/2021 - 06/2024
Shenyang University of Chemical Technology, Shenyang, China <i>Bachelor of Engineering in Applied Chemistry</i> Core Courses (<i>Chemical aspects</i>): Organic Chemistry; Inorganic Chemistry; Analytical Chemistry; Spectral Analysis; Principles of Chemical Engineering, etc.	09/2016 - 06/2020

VISITING EXPERIENCES

Girton College, University of Cambridge, Cambridge, UK <i>Neurobiology Summer School</i> Core Courses (<i>Neuroscience aspects</i>): Synaptic Plasticity; Sensory System; Somatosensory Processing and Pain, etc.	07/2023 - 08/2023
Irkutsk National Research Technical University, Irkutsk, Russia <i>Biochemistry Summer School</i> Core Courses: Irkutsk Traditional Culture and Religion of Baikal Region; Ecological Environment of Lake Baikal, etc.	07/2017 - 08/2017

PLATFORM DEVELOPMENT

cSVD Subtype Validation Index Platform for Subtype-Specific cSVD Profiling

Abstract: Developed a multi-dimensional classification framework for cSVD subtyping.

Pipeline(*planned roadmap v1.0-3.0, 2026; validated across GEO/UKBB/INSVD subsets*):

GEO dataset extraction, Vascular cell subpopulation selection, Multi-source cSVD Subtype Validation Index (Ver.1.0 to 3.0), UMAP/ROC-based feature validation, GO/KEGG enrichment, INSVD calibration, Subtype-specific ROC refinement, Modular tag output by phenotype (Genetic / Chronic / Acute / Else), and matrix-based cross-validation.

REGISTERED INTELLECTUAL PROPERTY

Software Copyright Registration • <i>scRNA-seq Analysis Software for Cell-Subpopulation Heterogeneity Following TBI</i> Abstract: Designed customized pipelines for transcriptomic data processing in neuroinflammatory models. Pipeline (<i>Published in J Neuroimmune Pharmacol, Mol Neurobiol, etc.</i>): Package management, Batch normalization, Group selection, Data import, Cluster annotation, Group comparison, GO/KEGG enrichment analysis, Cell-cell interaction, Trajectory inference, Visualization, RNA velocity (Linux only).	Certificate No. (China): 2025SR1455217
Software Copyright Registration • <i>Integrated Small Molecule Sensing Protein Platform for Protein Engineering</i> Abstract: Developed automated workflows for receptor-ligand docking, dynamics simulations, and protein modification. Pipeline (<i>Delivered containerised workflow in Olfactory Perception Project</i>): AlphaFold3, Diffdock-L, Molecular Dynamics(Gromacs), MMPBSA, Prodigy-lig, etc.	Certificate No. (China): 2025SR1628110

Work Copyright Registration • <i>Research Framework of scRNA-seq Analysis on TBI</i> Abstract: Comprehensive framework for analyzing single-cell transcriptomic heterogeneity in TBI models. Objective: The spatiotemporal and severity-dependent cellular heterogeneity across different brain regions following traumatic brain injury (TBI) remains poorly characterized. To address this gap, we utilized the GEO database for analysis.	Certificate No. (China): 渝作登字-2025-L-00704028
--	---

Work Copyright Registration • <i>Research Design Diagram of the Small Molecule Sensing Protein Platform</i> Abstract: Original conceptual design of a synthetic receptor-based sensing platform and workflow. Objective: Olfactory function is essential for sensory perception, but the individual variability poses challenges for direct access. Based on these insights, we aim to develop an artificial pathway to modulate olfactory function.	Certificate No. (China): 渝作登字-2025-L-00699626
--	---

Work Copyright Registration • <i>GN Cell Mechanism and Electrode Implantation Recovery Map (non-public version)</i> Abstract: This work proposes and visualizes a novel Glia-Neuron (GN) intermediate cell population and its mechanism of action in post-electrode implantation recovery, based on single-nucleus transcriptomic analysis. Objective: To construct an original cellular trajectory and communication map that explains GN cell emergence and its regulatory role in neural-glial remodeling following brain electrode implantation.	Certificate No. (China): 渝作登字-2025-L-00699654
--	---

SELECTED PRESENTATION & CONFERENCE

3rd International Qi-Blood Conference and the 8th Chinese Microcirculation Week

09/2024

- **Excellent Young Investigator Presentation (6 selected from 500+ participants)**

Topic: Presented translational insights into post-stroke neuroinflammation and vascular remodeling.

PROFESSIONAL EXPERIENCES

Bioinformatics Consulting for Translational Projects

06/2025 - Present

- **Provide PhD-level analytics support across Medical Sciences and Biomedical Engineering.**

Scope:

Study Design; Research Pipeline Construction; Statistical Modelling; Visualisation; Methods Documentation (Python/R/Docker; containerised environments).

Project 1: BCI-induced neural plasticity (School of Biomedical Engineering, Tsinghua university):

Methods: Mouse snRNA-seq

Delivered an end-to-end analysis pipeline (QC, integration, trajectory inference) within 8 weeks. Produced manuscript and methods documentation that supported the candidate's thesis analyses.

Project 2: Albumin-mediated VLDL signalling (School of Life Sciences, Tsinghua university):

Methods: Mouse scRNA-seq

Designed the analysis framework and implemented the initial pipeline (QC, clustering, pathway enrichment). Project ongoing, with handover documentation provided.

Department of Neurology, Peking University People's Hospital

05/2025 - Present

- **Research Collaborator (Part-time)**

Objective (Essential Tremor research):

To investigate the functional effects of transcranial magnetic stimulation (TMS) in patients with Essential Tremor compared to healthy controls, and to identify potential molecular targets through single-cell RNA sequencing (scRNA-seq).

Methods: Utilized scRNA-seq, mouse models, qPCR, diffusion tensor imaging (DTI), and immunofluorescence staining.

Current Progress (Experiment phase):

Functional brain imaging localized altered activity in specific regions of tremor patients. Parallel scRNA-seq analysis of relevant brain tissues revealed distinct gene expression signatures, potentially implicating novel therapeutic targets.

School of Biomedical Engineering, Tsinghua University

05/2024 - 05/2025

- **Research Assistant**

Objective 1 (Neural flexible electrode):

Investigated the long-term neuroimmune response to flexible versus rigid neural electrodes in vivo.

Methods: Implanted flexible and rigid electrodes in wild-type mice and assessed neuronal and glial responses after one month using histological and functional analyses.

Key Results (Manuscript In Preparation):

Found that flexible electrodes supported recovery of neuronal function, while rigid electrodes primarily promoted synaptic plasticity, accompanied by glial scarring.

Objective 2 (Modification of olfactory receptors):

Developed a biosensor system to enhance odor recognition through targeted receptor modification.

Methods: Implanted AAV vectors encoding engineered receptor constructs into the mitral/tufted cell layer and olfactory epithelium, and optimized detection strategies for volatile compounds.

Key Results (Published as Intellectual Property):

Established a functional biosensor capable of modifying mucosal epithelial neuron odor receptors to selectively detect target odors in complex environments.

Chinese Institute for Brain Research, Beijing

06/2023 - 07/2023

- **Intern**

Objective (PNS research): Investigated the neural circuits and molecular mechanisms underlying sensory-induced behavioral changes using optogenetic and chemogenetic modulation in mice.

Methods: Performed stereotaxic AAV injections targeting the thalamus and hippocampus, followed by optical fiber and DCZ stimulation. Conducted Go/No-Go behavioral assays and neuroelectrophysiological recordings. Collected whole-brain and trigeminal nerve samples for downstream analysis.

Bullet Points:

Identified specific neuronal pathways transmitting thalamic signals to cortical and peripheral somatosensory regions, elucidating mechanisms of behavior modulation by targeted stimulation.

State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, CAMS

08/2021 - 09/2021

- **Intern**

Objective (IL-2Ra research):

Investigated the relationship between macrophage, lymphocyte and neuroinflammatory recovery in transgenic mice.

Methods: Isolated bone marrow-derived macrophages for single-cell RNA sequencing. Collected peripheral blood to assess cytokine profiles and inflammatory signaling pathways.

Bullet Points:

Found reduced cytokine expression and attenuated inflammatory signaling, indicating improved immune recovery.

RESEARCH EXPERIENCES

National Natural Science Foundation of China: Project No. 82071314

The role and mechanism of the HDAC2 transcription complex in regulating IL-2/sIL-2R balance mediating CD4⁺ T lymphocyte transdifferentiation in ischemic stroke Participated

Objective: Investigate the role of IL-2/IL-2 receptor pathways in modulating immune responses and recovery following IS.

Methods:

Applied single-nucleus RNA sequencing, gene knockout mouse models, qPCR, DTI imaging, electrophysiology, and immunofluorescence to assess Treg proliferation, CD8⁺ T cell infiltration, and white matter integrity.

Key Results (Published in *J Neuroimmune Pharmacol, Cytokine Growth Factor Rev, etc.*):

Demonstrated that IL-2RA knockout improved sensory and motor recovery by reducing white matter damage, supporting IL-2/IL-2RA as potential biomarkers for early diagnosis and prognosis in ischemic stroke.

National Natural Science Foundation of China: Project No. 82271309

The mechanism of IL-2RA regulating the remodeling of thalamic-cortical junction after cerebral ischemia by targeting specific astrocyte subtypes through the autocrine pathway Participated

Objective: Investigated the differentiation of mouse myeloid immune cells and evaluated IL-2 signaling in Treg subsets.

Methods:

Analyzed immune cell lineage development and Treg subset activation influenced by inflammatory cytokines. Reviewed the potential clinical applications of IL-2 mutants as biomarkers for prognosis in immune-related diseases.

Key Results (Published in *J Neuroimmune Pharmacol, Cytokine Growth Factor Rev, etc.*):

Identified key pathways linking IL-2-mediated regulation of Treg differentiation to peripheral immune modulation, supporting the potential of IL-2 mutants as diagnostic and prognostic biomarkers.

National Natural Science Foundation of China: Project No. 81771260

The effect and mechanism of rapid, selective intraarterial hypothermia on ischemia-reperfusion injury in rhesus monkeys with acute ischemic stroke (IS) Participated

Objective: Examine the plasma miRNA associated with IS in rhesus monkeys to identify potential therapeutic targets.

Methods:

Performed differential expression analysis and clustering of circulating miRNAs pre-ischemia and post-ischemia. Focused on miRNAs that share target genes related to neurovascular injury and repair.

Key Results (Published in *Front Neurosci*):

Identified mmI-let-7g-5p and let-7g-3p_1ss22CT as oppositely regulated miRNAs targeting RB1CC1, GNG5, and CXCR4, suggesting mmI-let-7g as a potential therapeutic target for ischemic stroke.

National Natural Science Foundation of China: Project No. 22172085

Electrochemical bimodal neural interface and its stability in living environment Participated

Objective: Evaluate hippocampal cellular responses to flexible versus rigid neural electrode implantation in mice.

Methods: Conducted scRNA-seq and immunofluorescence to analyze cell type composition and gene expression.

Key Results (Manuscript In Preparation):

Discovered a transitional cell population between oligodendrocytes and neurons associated with electrode type.

PUBLICATION & MANUSCRIPT

• Li X, Geng X, Fan J, Yan F, Wang R, Yang Z, Li Y , Wang J. Molecular Mediators of Neutrophil Primary Granule Release Following Acute Ischemic Stroke and their Associated Epigenetic Modulation by HDAC2. <i>Mol Neurobiol</i> . Q1, DOI: 10.1007/s12035-025-04699-7	01/2025 (IF: 4.6)
• Li Y , Jiang Q#, Geng X, Zhao H. The High-Affinity IL-2 Receptor Affects White Matter Damage after Cerebral Ischemia by Regulating CD8 ⁺ T Lymphocyte Differentiation. <i>J Neuroimmune Pharmacol</i> . Q1, DOI:10.1007/s11481-025-10169-7	01/2025 (IF: 5.2)
• Li Y , Li X#, Geng X, Zhao H. The IL-2A receptor pathway and its role in lymphocyte differentiation and function. <i>Cytokine Growth Factor Rev</i> . Q1, DOI:10.1016/j.cytoogr.2022.06.004	10/2022 (IF: 17.6)
• Chen J, Zhao H, Huang Y, Li Y , Fan J, Wang R, Han Z, Yang Z, Wu L, Wu D, Luo Y, Ji X. Dysregulation of Principal Circulating miRNAs in Non-human Primates Following Ischemic Stroke. <i>Front Neurosci</i> . Q2, DOI:10.3389/fnins.2021.738576	08/2021 (IF: 5.1)

CERTIFICATES & AWARDS

• Summer Exchange Student Excellence Award	Xuanwu Hospital, CCMU, China	08/2023
• Summer Exchange Student Project Certificate	Girton College, University of Cambridge, UK	08/2023
• Academic Scholarship	Xuanwu Hospital, CCMU, China	2021 - 2024
• Laboratory Animal Practitioner Qualification	Experimental Animal Training Center, China	09/2021
• Summer Exchange Student Excellence Award	Irkutsk State University, Russia	09/2017

LANGUAGE PROFICIENCY & SKILLS

Languages: Mandarin(Native), English (Proficient; IELTS expected by Dec 2025), Russian (Conversational)

Biomedicine Skills: scRNA-seq, AAV design, ELISA, WB, qPCR, MCAO model, Electrophysiology, Flow cytometry, etc.

Computational Skills: R, Python, AutoDock, Gromacs, DiffDock, fMRI Analysis, Computer-Aided Drug Design, etc.

RESEARCH INTERESTS

- Molecular mechanisms of cerebral small vessel disease (cSVD).
- Multi-omic data integration and Clinical-based disease subtyping.